ADVANCES IN WIND ENERGY STRUCTURES:

Current trends on the use of AI to advance wind energy infrastructures

Claudio Borri & FengyingWu

2025/9/3

CONTENTS

- 1. Introduction
- 2. Static and dynamic analysis
- 3. Examples of large projects

European Wind Initiative

- To make wind energy the most competitive energy source on the market during the decade 2020-2030, and as a first step decreasing the wind energy costs by at least 20% by 2020
- To enable the required large-scale deployment and grid integration of wind energy offshore and onshore with the aim of reaching wind penetration levels beyond 20% of European electricity consumption in the early 2020's
- Ensuring the European technology leadership on- and offshore, and developing large offshore wind turbines, including exploring concepts up to 20 MW.

Installed and planned wind power Summary of Strategic Research Agenda

- Short term targets: within 2020 to reduce the greenhouse gas emission by 20% and ensure 20% of renewable energy sources in the EU.
- Long term targets: decarbonization. To reduce by 60–80% the greenhouse gas emission.

To meet the 2020 targets, among many other research lines, for the EC it is imperative to:

Double the power generation capacity of the largest wind turbines, with offshore wind as the lead application

Wind still leads EU power sector (2018)

Newly installed and decommissioned capacity in the EU-28

Source: Platts, SolarPowerEurope, WindEurope

Wind power capacity in 2018

	Installed in 2018 [GW]	End 2018 (cumulative) [GW]
Total EU-28	11.7	189
Of which Offshore	2.7	19

With 362 TWh generated in 2018, wind power covered 14% of the EU's electricity demand!

Source: WindEurope

Planned capacity up to 2020

In March 2009 the EWEA target for total installations by 2020 has been increased from **180 GW to 230 GW**, of which **40 GW** will be **offshore**.

This means 14-18% of the EU electricity demand (60% of EU households)

Cumulative Installed capacity (MW) and number of turbines by country

Offshore at the end 2018

Development of offshore installations

- by 2010:3.5 GW predicted in March 20093 GW actually at the end of 2010
- by 2020:
 40 GW predicted in March 2009
 23.5 GW corrected in July 2014
 19 GW at the end of 2018 ...
- by 2030:120 GW predicted in March 200966 GW corrected in August 2015

Offshore and SRA

More than 10 % of total demand within 2030

(Ref. Ch. 3 Strategic Research Agenda)

2030 Priorities:

Offshore Wind Power Meteorology:

• Development of a fully integrated wind/waves/current interaction models

Substructures: (25% of the whole offshore investment!)

- Development of new substructure concepts
- Develop improved designs to extend the life of structures, to reduce costs and to incorporate risk based life—cycle approaches.

Consider: forces (and somehow costs) increase by the square of wind/water velocity!!

The worldwide situation – regions

The worldwide situation – new installations

Installed and planned wind power The worldwide situation – total installations

The worldwide situation – outlook to 2023

Potential The European onshore potential

Open plain³

> 7.5

6.5-7.5

5.5-6.5

4.5-5.5

< 4.5

 Wm^{-2}

> 500

300-500

200-300

100-200

< 100

Minimum cost-effective wind speed = 4 m/s

Open sea5

 Wm^{-2}

> 800

600-800

400-600

200-400

< 200

 $m \, s^{-1}$

> 9.0

8.0-9.0

7.0 - 8.0

5.5-7.0

< 5.5

Hills and ridges6

 Wm^{-2}

> 1800

700-1200

400-700

< 400

1200-1800

 $m \, s^{-1}$

> 11.5

10.0-11.5

8.5-10.0

7.0- 8.5

< 7.0

At a sea coast4

 $m \, s^{-1}$

> 8.5

7.0 - 8.5

6.0 - 7.0

5.0-6.0

< 5.0

 Wm^{-2}

> 700

400-700

250-400

150-250

< 150

Source: European Wind Atlas. Copyright © 1989 by Risø National Laboratory, Roskilde, Denmark.

Potential The European offshore potential

 $m s^{-1}$

> 8.5

7.5 - 8.5

6.5-7.5

5.0-6.5

< 5.0

 Wm^{-2}

> 700

450-700

300-450

150-300

< 150

 $m \, s^{-1}$

> 9.0

8.0-9.0

7.0-8.0

5.5-7.0

< 5.5

 Wm^{-2}

> 800

600-800

400-600

200-400

< 200

Minimum cost-effective wind speed = 4 m/s

100 m

 Wm^{-2}

> 1100

650-1100

450-650

250- 450

< 250

 $m \, s^{-1}$

> 11.0

9.5-11.0

8.0- 9.5

6.5- 8.0

< 6.5

 Wm^{-2}

> 1500

900-1500

600-900

300-600

< 300

 $m \, s^{-1}$

> 10.0

8.5-10.0

7.5- 8.5

6.0- 7.5

< 6.0

Source: European Wind Atlas. Copyright © 1989 by Risø National Laboratory, Roskilde, Denmark.

Technologies

The technological challenge

A (offshore) wind turbine is a very sophisticated system, combination of components and sub-systems that have to be designed in an interdisciplinary and integrated manner. In addition, the size and complexity of wind turbines is increasing rapidly over time:

Technologies

- 10 MW offshore wind turbine
- Rotor diameter of 164 metres
- 80 m blades, the equivalent of nine double decker London buses
- Each blade weighs 35 tonnes
- Swept area of 21,124 m2, larger than the London Eye
- One turbine can power 5,977
 German homes
- Available for sale now
- Can be delivered for commercial installation beginning in 2021

All copyrights to MHI Vestas

http://www.mhivestasorishore.com/mhi-vestas-launches-the-first-10-mw-wind-turbine-in-history/

Thank You for Your attention

Claudio Borri

Dott. Ing., Dr.-Ing h.c. mult., Full Professor

claudio.borri@unifi.it

Dept. of Civil & Environmental Engineering, Univ. of Florence, Italy

